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Stationary Solutions in Three-Dimensional General 
Relativity 
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All the stationary solutions of the three-dimensional vacuum Einstein equations 
are obtained. These include a class of multicenter solutions representing systems 
of massive and spinning point particles. The geodesic motion of a test particle 
in the one-particle metric is discussed. A class of geodesics contain finite intervals 
where the particle moves back in coordinate time, without violation of causality. 

1. I N T R O D U C T I O N  

In  three space-time dimensions,  the Riemann tensor  is uniquely deter- 
mined by the R i c o  tensor, so that any solution o f  the vacuum Einstein 
equat ions is flat, except for possible singularities (point particles). Because 
o f  the absence of  geodesic deviation between particles (Deser et al., 1984), 
static multiparticle systems are possible and may easily be constructed 
(Deser  et al., 1984; Cl6ment,  1976, 1983). This situation is curiously similar 
to that o f  f ive-dimensional general relativity, where the vacuum Einstein 
equations have been shown to admit  static multiparticle solutions 2 in the 
axisymmetric  case (C16ment, 1984). It may  therefore be worthwhile to s tudy 
more  closely the three-dimensional  case, as a model  for the more  compli-  
cated five-dimensional case. 

The one-particle rotat ing solution o f  three-dimensional  general relativ- 
ity was also constructed in Deser  et al. (1984). In this work we shall study 
in more detail the stat ionary solutions. All the stationary solutions o f  the 
three-dimensional  vacuum Einstein equat ions are derived in Section 2 o f  
this paper.  A part icularly interesting class is that  o f  multicenter solutions 
representing systems o f  massive and spinning point  particles. The effect o f  

lD6partement de Physique Th6orique, Universit~ de Constantine, Constantine, Alg~rie. 
2These solutions are regular, so that the corresponding particles are extended in the three 
space dimensions. 
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the one-particle metric on the geodesic motion of a test particle is investi- 
gated in Section 3. A class of  geodesics is found to contain finite intervals 
where the particle appears to move back in time. This peculiarity does not 
conflict with causality. 

2. GENERAL STATIONARY SOLUTION 

The general stationary metric can always be written (Landau and 
Lifshitz, 1970) 

ds  2 = h 2( d t  + o~i dx i )2  + gij dx  ~ dx  j (1) 

where the metric functions h, ~o~, gu depend only on the space coordinates 
x ~. The arbitrariness of the vector potential ~o~ under gravitational gauge 
transformations t-> t + F(r )  can be restricted by the gauge condition 

,oi,=0 (2) 

(in this and the following equations, the spatial metric ~0 is used to raise 
and lower indices and to define the covariant derivative). The vacuum 
Einstein equations may then be written (Landau and Lifshitz, 1970) 

;i + h4fuf. 
Roo=- - h h ; i  4 ~ J ~ = O  

i _ _  _ _ i l a - - l f l a 3 r  _ _  Ro= 2" ~,,.I j . j - 0  (3) 

h 2 
R 0 =_ _ ~ f , k f ~  _ h - I  h;,; j +/~# = 0 

2 ~,~ 

where 

fi~ -'-= toj;i - toi;j (4) 

and R# is the Ricci tensor constructed from the spatial metric ~#. 
In the case of two space dimensions, we can always choose isotropic 

coordinates such that 

gu = - e2U~ (5) 

The gauge condition (2) then reduces to the flat space equation 

toi, i = 0 (6) 

which is solved by 

co; = % Oj~ (7) 
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and the antisymmetric tensor field f j  is given in terms of the scalar field q~ 
by 

f i =  - eo  A~ (8) 

(A being the two-dimensional Laplacian operator). 
The second group of equations (3) may be written in isotropic coordin- 

ates as 

eij�89 - I  e -2U(e-2Uh 3 A~o),j = 0 (9) 

and are solved by 

A ~  = A e2Uh -3 (10) 

where A is an arbitrary constant. Inserting this result in the first of equations 
(3), we obtain 

A 2 
A h  + - -  e2Uh-3 = 0 ( 11 ) 

2 

while the trace and the traceless part of the last group of equations (3), 
respectively, give 

3A 2 
A u  - - -  e2Uh -4 = 0 (12) 

4 

and 

1 ;k h;ij -~h;kgij = 0 (13) 

Introducing the complex variable z = x + iy, the equations (13) may be 
written as 

which are solved by 

02h Ou 8h 
2 (14) 

OZ 2 OZ OZ 

Oh(z ,  $ ) = ~ ( g )  e 2"(~#) (15) 
Oz 

where/~ is an arbitrary function. We must distinguish between two cases: 
(a) /~(g) - 0. Then h is constant and we may, without loss of generality, 

choose 

h =  1 (16) 
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The equation (11) can only be solved if A = 0, which reduces equations (10) 
and (12) to 

A~=O 
(17) 

Au =0  

The multicenter solutions (up to an additive constant) of these equations 

K 
~ =  ~ z r ~ J , ~ l n l z - a , ~ l  

(18) 
- - - -~E 

u-- 27r ~ m s l n l z - a ~ l  

(K = 8r is the gravitational constant) lead to the metric 

ds 2 = ( dt + K._.K_ e U dx  i dxJ'~ 2 
2zr~J~ ~_---~--~) -H[r -a~]- (~/~ ' )"~dx 2 (19) 

representing a system of point particles of"masses"  rn~ (Deser et al., 1984; 
C16ment, 1976, 1983) and "spins" J~ located at the points a~. In the case 
of a single massless spinning particle at the origin, we recover the rotating 
solution of Deser et al. (1984): 

ds 2= dr+ JdO - ( d r 2 + r  2 dO z) (20) 

(b) tx(g) ~ O. If  we define a new complex variable Z = X + i Y  by 

az=~- ' (z )  az (21) 

the equation (15) may be rewritten as 

Oh 
oN - 1~12 e2u = e2u (22) 

where the new spatial metric function U is defined by 

e 2~ dzd~. = e 2 U d Z d 2  (23) 

It follows from (22) that h and U depend on the single variable X, so that 
equations (11) and (12) are both solved by 

dh A 2 
- - - - -  h -2 = t ,  ( 2 4 )  
d X  4 

where v is another integration constant, and the equation (10) is solved by 

~p(R) = f ( a )  + 2 [ h ( X )  - uX]  (25) 
A 
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where f is an arbitrary harmonic function: 

Af(R) = 0 

Defining a new time coordinate T by 

(26) 

a f  
d T  = dt + s U ~ X  j d X  i (27) 

we finally obtain 

/ A 2 \  -1 
d s 2 = h 2 d T 2 - A d T d Y - v d Y 2 - 1 v + - 4 ~  ) dh 2 (28) 

The Newtonian potential h is infinite at spatial infinity, so that this solution 
does not admit a satisfactory physical interpretation [the metric (28) is 
further discussed in the Appendix]. 

3. GEODESIC MOTION IN THE FIELD OF A POINT PARTICLE 

In this section we investigate the physical properties of the one-particle 
rotating solution 

ds 2 = ( d t +  to dO) 2 -  dr 2 -  ~2r2 dO 2 (29) 

where 

/( 
to = ~--~J, c~ = 1 --f-K M2~r (30) 

For r =oo  to be an end point of the spatial sections of the metric (19), a 
must be positive (Deser et al., 1984; C16ment, 1976, 1983), and we may 
assume to -> 0. 

We note that the metric (29) is the three-dimensional section of  a 
particular case of four-dimensional cylindrical Gfidel-like geometries 
(G6del, 1949), defined by (Novello et al., 1982) 

ds 2 = a2[( dt  + H ( r) dO) 2 - dr 2 - R2(r) dO 2 - dz  2] (31) 

In our case, a =  1, H = t o ,  R2=c~2r  2. 
As pointed out in Deser et al. (1984), the manifold of metric (29) 

contains closed timelike lines, for instance, the lines t =  to, r =  r o < t o / a .  
This does not necessarily lead to difficulties with causality, unless there are 
closed timelike geodesics. We shall see that the geodescis of the metric (29) 
are always open. 
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The first integrals o f  the geodesic equat ions o f  mot ion  in the geometry  
(29) are 

o-  t7 
o / r  2 

i=__7 ~o17 
fl otr2 (32) 

t :2 = 7 2. 12/2 
F 2 

where the dot  stands for  the derivative with respect to an affine parameter  
r, and l,/3, y are integration constants. The constant  3' is an unessential  
normal izat ion o f  the affine parameter ,  while/3 is the asymptot ic  velocity o f  
the test particle; we shall assume for  the discuss ion/3  > 0. 

The constant  l is related to the orbital angular  m o m e n t u m  of  the test 
particle. In  the special case l = 0, the mot ion  of  the particle is obviously 
uniform,  at least until it hits the conical singularity r = 0. In  the general 
case l ~ 0, the test particle experiences apparen t  forces due to the coupl ing 
o f  its angular  m o m e n t u m  with the mass [first equat ion (32)] and the spin 
[second equat ion (32)] o f  the singularity. 

The equat ions o f  mot ion  (32) are readily integrated, to give 

I11 
r - -  

cos ~ (0 - 0o) 

l 
t - to = -~ tan ~(0  - 0o) - to(0 - 0o) 

(33) 

Choos ing  0o = 0, we see that  the open trajectory is cont inuously  deflected 
f rom 0 = - T r / 2 a  to 0 = + T r / 2 a ,  so that the point  mass M may  be measured  
f rom the asymptot ic  deflection 

A O  = - 7 r -  = 1 - K M / 2 7 r  (34) 

To similarly single out  the effect o f  the point  spin J, we discuss the 
part icular  case M = 0 ( a  --- 1). In this case the test particle follows the straight 
line x = III with the law o f  mot ion  

, o arctan( )] (35) 
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For I > 0, the particle is accelerated as it nears the singularity to a maximum 
velocity 

/3 (36) 
Vo - 1 - /3~o / I 

for y = 0, then is decelerated as it goes away. The total time gain (with 
respect to a particle moving in empty space at the constant velocity 13) is 

At = toTr (37) 

The process is reversed for l < 0, the time-gain being replaced by an equal 
time loss. So (assuming that these results can be carried over to quantum 
mechanics) a way to measure the point spin J would be to send a wavepacket  
toward the singularity, and measure the phase shift between the two left- 
and right-outgoing wavepackets, proportional  to the time delay 

2At = KJ (38) 

A peculiarity of  this motion, which we shall discuss in the general case 
a # 1, is that if 

0 < I < toil (39) 
ot 

then the velocity is accelerated to infinity as the particle nears a critical 
point of  its trajectory. From there on, the particle appears to go backward 
in time, until a symmetrical critical point, where time resumes its normal 
course (Figure 1). This peculiarity, which also occurs in the case of  the 
G/Sdel geometry does not, as stressed by Novello et al. (1982); represent a 
violation of  causality. It  is not directly observable because the test particle 
is free except for possible interactions at past and future time infinity. 
Moreover,  what appears  bizarre at the classical level can be explained at 

/ 
/ 

t "  �9 " / "  
Fig. 1. A geodesic with 0 < I < coil/a. 
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Fig. 2. 

Cl6ment 

The quantum equivalent of  Fig. 1. 

the quantum level in terms of pair annihilation and creation in the external 
metric field (Figure, 2). 

In the limit fl -~ oo, the second equation (33) goes over to 

t -  to = - to (0  - 0o) (40) 

so that the corresponding open geodesics are contained in a finite time 
interval w~r/a. Of course these geodesics do not describe the motion of 
physical particles, for which fl -< 1. 

APPENDIX 

We further discuss here the stationary, cylindrical metric obtained at 
the end of Section 2 [case (b)]: 

/ ,~2 \ -1  
d s 2 = h E d T 2 - A d T d Y - v d y 2 - ~ v + - ~ )  dh 2 (Al l  

and its analytic continuation to h E ( 0. This metric has the correct signature 
( + - - )  as long as 

vh2+)t2> 0 (A2) 
4 

We may distinguish three subcases according to the sign of v: 
(o~) v > 0. The introduction of a new coordinate r such that 

A 2 
v2s ~2= vh2+ - (A3) 

4 

enables us to rewrite the metric (A1) as 

ds 2 = v~ 2 d T  2 -  d~ 2 -  v d Y +  d T  (A4) 

The obvious interpretation is that Y is an angular coordinate, so that the 
three-dimensional theory is effectively reduced, & la Kaluza-Klein,  to two 
dimensions. 
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(/3) u = 0 .  The definition 

Asc = h 2 

leads to 

(AS) 

( • as 2= A~ d T - 2  ~ d Y  -4---~ d y 2 -  d~2 (A6) 

This metric stays perfectly regular (det g = - A 2 / 4 )  as s ~ varies f rom +oo to 
-oo.  However  the light cones, oriented along the T axis for ~-~ + ~ ,  gradual ly 
turn over as s ~ decreases, until they are oriented along the Y axis for ~:-~ -co.  

(y)  v < 0 .  The metric is again given by (A4), where Y is now to be 
interpreted as a time coordinate ,  and T as an angular  space coordinate.  
Obviously,  we recover in this case the one-particle rotating solution (29). 
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